|
SmartEngine
1.6.0
|
GradientDescentTrainer training info More...
#include <GradientDescentTrainer.h>
Public Attributes | |
| GradientDescentTrainingAlgorithm | algorithm = GradientDescentTrainingAlgorithm::Adam |
| The training algorithm to use More... | |
| RegularizationLossInfo | regularizationLoss |
| The regularization loss parameters to apply. More... | |
| float | clipGradients = 0.0f |
| If this value is greater than 0, the gradients will be clipped to the range [-ClipGradients, ClipGradients] before being applied. A value less than or equal to 0 will result in no clipping. More... | |
| float | learnRate = 0.001f |
| ADAM optimizer learn rate More... | |
| float | beta1 = 0.9f |
| ADAM optimizer beta1 value More... | |
| float | beta2 = 0.999f |
| ADAM optimizer beta2 value More... | |
| float | epsilon = 1e-8f |
| ADAM optimizer epsilon value More... | |
GradientDescentTrainer training info
| GradientDescentTrainingAlgorithm SmartEngine::GradientDescentTrainingInfo::algorithm = GradientDescentTrainingAlgorithm::Adam |
The training algorithm to use
| float SmartEngine::GradientDescentTrainingInfo::beta1 = 0.9f |
ADAM optimizer beta1 value
| float SmartEngine::GradientDescentTrainingInfo::beta2 = 0.999f |
ADAM optimizer beta2 value
| float SmartEngine::GradientDescentTrainingInfo::clipGradients = 0.0f |
If this value is greater than 0, the gradients will be clipped to the range [-ClipGradients, ClipGradients] before being applied. A value less than or equal to 0 will result in no clipping.
| float SmartEngine::GradientDescentTrainingInfo::epsilon = 1e-8f |
ADAM optimizer epsilon value
| float SmartEngine::GradientDescentTrainingInfo::learnRate = 0.001f |
ADAM optimizer learn rate
| RegularizationLossInfo SmartEngine::GradientDescentTrainingInfo::regularizationLoss |
The regularization loss parameters to apply.